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Neural Networks and Training

Classification

https://shorturl.at/jlO35
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Neural Network - Example

import torch
import torch.nn as nn
import torch.optim as optim

X
d

torch.randn(1000,2)
torch.randint(2, (1000,1)).float()

model = nn.Sequential(nn.Linear(2,4),
nn.RelU(),
nn.Linear(4,1))

crit = nn.BCEWithLogitsLoss()
optimizer = optim.AdamW(model.parameters())
for 1 in range(1060):

y = model(x)

loss_ = crit(y, d)

# optimisation

optimizer.zero grad()

loss .backward()

optimizer.step()
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Overview - MCS & MSK

> Language
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Overview - MCS & MSK

> Language
> Anomaly Detection
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Overview - MCS & MSK

> Language
> Anomaly Detection
> Control
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Developing a LLM for Particle Accelerators

PACuna: Automated Fine-Tuning of Language Models
for Particle Accelerators

> Source books, conference
proceedings, and arxiv preprints as _—

Raimund Kammering Annika Eichler
DESY. DESY, DESY.
PDFs. Hamburg, Germany Hamburg, Germany Hamburg, Germany
antonin.sulc@desy.de
Tim Wilksen
DESY,

Hamburg, Germany

Abstract
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and question generation to mi ize expert involvement and make the data publicly
available. PACuna demonstrates proficiency in addressing accelerator questions,
validated by upuu Our approach shows adapt ge models 1o scientific
domains |J} ine-tuning technical texts and auto-generated corpora capiuring the
latest developments can further produce pi -trained models o answer som specific
questions that commercially available assistants cannot and can serve as intell
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Developing a LLM for Particle Accelerators

Cuna: Automated Fine-Tuning of Language Models
for Particle Accelerators

> Source books, conference
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> Training a LLM without a human in
the loop.

Tim Wilksen
DESY,

addressing accelerator questions,
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domains by fine-tuning technical texts and auto-generated corpora capturing the
latest developments e produce pre-trained models to answer some specifi
questions that commercially available assistants ¢
assistants for individual facilities
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LLM - Example

How many superconducting radio frequency (SRF) cavities does European
XFEL have?
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LLM - Example

How many superconducting radio frequency (SRF) cavities does European

XFEL have?
Ours: European XFEL has a total of 800 superconducting radio frequency

(SRF) cavities. partially correct
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LLM - Example

How many superconducting radio frequency (SRF) cavities does European
XFEL have?

Ours: European XFEL has a total of 800 superconducting radio frequency
(SRF) cavities. partially correct

falcon-180b: The European XFEL has a total of 16 superconducting
radio-frequency (SRF) cavity stations that contain approximately 170
individual SRF cavities... wrong
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LLM - Example

How many superconducting radio frequency (SRF) cavities does European
XFEL have?

Ours: European XFEL has a total of 800 superconducting radio frequency
(SRF) cavities. partially correct

falcon-180b: The European XFEL has a total of 16 superconducting
radio-frequency (SRF) cavity stations that contain approximately 170
individual SRF cavities... wrong

ChatGPT: As of my last knowledge update in September 2021, the European
XFEL (X-ray Free-Electron Laser) facility had a total of 100
superconducting radiofrequency (SRF) cavities. wrong
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LLM - Future - Multimodality

Human How should | make something like this?
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LLM - Future - Multimodality

MiniGPT-4 To make this dish, you will need the following ingredients:
No Q-Former
* 4 large live lobsters
* 2 tablespoons olive oil
* Salt and pepper
* 2 cloves garlic, minced
* 1lemon, juiced
* 1 tablespoon chopped fresh parsley

Here's how to make it:

Human How should | make something like this?
1. Preheat your oven to 425°F (220°C).

DESY. | Machine Learning for Accelerator(s) R&D | Antonin Sulc | Hamburg, Page 9


http://creativecommons.org/licenses/by/4.0/

Log Anomaly Detection

>

DESY.

Log anomaly detection using word
embeddings and Hidden Markov
Models.
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LOG ANOMALY DETECTION ON EUXFEL NODES
A. Sulc*, A. Eichler, T. Wilksen, DESY, Hamburg, Germany

Abstract

This article introduces a method to detect anomalies in the
log data generated by control system nodes at the European
XFEL accelerator. The primary aim of this proposed method
s to provide op: a ing of the
availability, status, and problems specific to each node. This
information is vital for ensuring the smooth operation. The
sequential nature of logs and the absence of a rich text cor-
pus that is specific to our nodes poses significant limitations
for traditional and learning-based approaches for anomaly
detection. To overcome this limitation, we propose a method
that uses word embedding and models individual nodes as
a sequence of these vectors that commonly co-oceur, using
a Hidden Markov Model (HMM). We score individual log
entries by computing a probability ratio between the proba-

to mitigate potential problems from arising. Monitoring the
logs of the watchdog nodes by textual analysis of their logs
not only provides an automated means of comprehending
the European XFEL accelerator system conditions but also
enables early detection and resolution of issues that would
otherwise only gain significance in the event of a specific
node failure.

The structure of the paper is the following: First, we
summarize the related work in log anomaly detection. In
the next section, we show four main steps of our approach
with important justifications and examples. Lastly, we show
several examples and sketch a potential future work in this
field.

RELATED WORK
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Log Anomaly Detection

> Log anomaly detection using word
embeddings and Hidden Markov
Models.

> Represents logs as vectors
(Word2Vec), and models their
representations as HMMs.

DESY. | Machine Learning for Accelerator(s) R&D | Antonin Sulc | Hamburg,

LOG ANOMALY DETECTION ON EUXFEL NODES
A. Sulc*, A. Eichler, T. Wilksen, DESY, Hamburg, Germany

Abstract

This article introduces a method to detect anomalies in the
log data generated by control system nodes at the European
XFEL acceleruor. The priary i of this proposed method
istop 2 of the
availabi Ay status, and pmblcxm specific to each node. This
information is vital for ensuring the smooth operation. The
sequential nature of logs and the absence of a rich text cor-
pus that is specific to our nodes poses significant limitations
for traditional and learning-based approaches for anomaly
detection. To overcome this limitation, we propose a method
that uses word embedding and models individual nodes as
a sequence of these vectors that commonly co-oceur, using
a Hidden Markov Model (HMM). We score individual log
entries by computing a probability ratio between the proba-

to mitigate potential problems from arising. Monitoring the
logs of the watchdog nodes by textual analysis of their logs
not only provides an automated means of comprehending
the European XFEL accelerator system conditions but also
enables early detection and resolution of issues that would
otherwise only gain significance in the event of a specific
node failure.

The structure of the paper is the following: First, we
summarize the related work in log anomaly detection. In
the next section, we show four main steps of our approach
with important justifications and examples. Lastly, we show
several examples and sketch a potential future work in this
field.

RELATED WORK

Page 10



http://creativecommons.org/licenses/by/4.0/

Log Anomaly Detection

> Log anomaly detection using word
embeddings and Hidden Markov
Models.

> Represents logs as vectors
(Word2Vec), and models their
representations as HMMs.

> Scores entries by probability ratio to
detect anomalies (how well is the
message fitting to the sequence).
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Log Anomaly Detection

> Log anomaly detection using word
embeddings and Hidden Markov
Models.

> Represents logs as vectors
(Word2Vec), and models their
representations as HMMs.

> Scores entries by probability ratio to
detect anomalies (how well is the
message fitting to the sequence).

> Tested on EuXFEL logs, identifies
score spikes corresponding to errors.
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Log Anomaly Detection
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®
DESY. | Machine Learning for Accelerator(s) R&D | Antonin Sulc | Hamburg, Page 11


http://creativecommons.org/licenses/by/4.0/

Log Anomaly Detection

(TEST,OK,TEST,OK, )

®
DESY. | Machine Learning for Accelerator(s) R&D | Antonin Sulc | Hamburg, Page 11


http://creativecommons.org/licenses/by/4.0/

Log Anomaly Detection

(TEST,OK,TEST,OK,TEST,OK,

DESY. | Machine Learning for Accelerator(s) R&D | Antonin Sulc | Hamburg,

Page 11


http://creativecommons.org/licenses/by/4.0/

Log Anomaly Detection

(TEST,OK, TEST,OK, TEST,OK,TEST,OK)

DESY. | Machine Learning for Accelerator(s) R&D | Antonin Sulc | Hamburg,

Page 11


http://creativecommons.org/licenses/by/4.0/

Log Anomaly Detection
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Log Anomaly Detection - Sequential Anomaly
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Log Anomaly Detection - Sequential Anomaly
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Log Anomaly Detection - Sequential Anomaly
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Log Anomaly Detection - Sequential Anomaly
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Log Anomaly Detection - Unexpected Message Anomaly
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Log Anomaly Detection - Unexpected Message Anomaly
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Log Anomaly Detection - Unexpected Message Anomaly
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Log Anomaly Detection - Unexpected Message Anomaly
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Log Anomaly Detection - Unexpected Message Anomaly
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Log Anomaly Detection - Real Example

140] — score's
--=- average 5
; 120
0 getpid no process
1  no process try start 100
2 getpid no process o 80
g
3  getpid no process 3 60
4 no process try start 0
5 getpid no process
6 no process try start %
7  no process try start 0
s 0123456789101112131415161718
8  pid change $nz $nz Event (log entry)
9 getpid pid not match process name 150
. s of last 50 events
10 pld Change $n2 $n2 1259 ---- s of anomalous events
1 g?tpld pid not match process name 0
12 pid change $nz $nz -
5
13 pid change $nz $nz «
s . . e 50
14 pid not match process name toggled $nz times $nz min & ’
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16 signal term received 0
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Event (log entry)
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Log Anomaly Detection

from hmmlearn import hmm
import numpy as np

x = np.stack([[o,1],[1,0],[®,1],[1,0],[0®,1],[21,0]1,[0,1],[2,0]1)
model = hmm.GaussianHMM(n_components=2, covariance_type="diag")
model.fit(x[:-1,:])
logp = []
for i in range(1, x.shape[0]+1):

logp.append(model.score(x[:1]))

logp = np.array(logp)
score = logp[:-1] - logp[1:]

®
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Anomaly Detection on BPMs

>

DESY.

Use data-driven approaches to
analyze beam trajectories at European
XFEL.
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BEAM TRAJECTORY M

ITORING AT THE

EUROPEAN XFEL

A. Sulc’, R. Kammering, T. Wilksen, DESY, Hamburg, Germany

Abstract

Interpretation of data from beam position monitors is a
crucial part of the reliable operation of European XFEL. The
interpretation of beam positions is often handled by a physi-
cal model, which can be prone to modeling errors or can lead
to the high complexity of the computational model. In this
paper, we show two data-driven approaches that provide in-
sights into the operation of the SASE beamlines at European
XFEL. We handle the analysis as a data-driven problem.
separate it from physical peculiarities and experiment with
available data based only on our empirical evidence and the

e

%

Figure 1: An example input to our methods. The left figure
shows a series of the first five bunch trajectories at the SASE1
beamline after the mean of 600 bunches is subtracted. The
right figure shows a series of bunches after substraction of
mean. Each column is one jzpulse.
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Anomaly Detection on BPMs

> Use data-driven approaches to
analyze beam trajectories at European
XFEL.

> Fit trajectories to sine function based
on periodicity from beam optics.
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Anomaly Detection on BPMs

> Use data-driven approaches to
analyze beam trajectories at European
XFEL.

> Fit trajectories to sine function based
on periodicity from beam optics.

> Train transformer model to map
inputs to common mode for anomaly
detection.
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Anomaly Detection on BPMs

DESY.

Use data-driven approaches to
analyze beam trajectories at European
XFEL.

Fit trajectories to sine function based
on periodicity from beam optics.

Train transformer model to map
inputs to common mode for anomaly
detection.

Identify some faults from beam data
recorded prior to issue reports.
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mean. Each column is one gzpulse.
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Abstract. The European XFEL is currently operating with hundreds of superconducting
radio frequency cavities. To be able to minimize the downtimes, prevention of failures on the
SRF cavities is crucial. In this paper, we propose an anomaly detection approach based on
& neural network model to predict occurrences of breakdowns on the SRF cavities based on a
model trained on historical data. We used our existing anomaly detection infrastructure to get
& subset, of the stored data labeled as faulty. We experimented with different training losses
to maximally profit from the available data and trained a recurrent neural network that can
predict a failure from a series of pulses. The proposed model is using a tailored architecture
with recurrent neural units and takes into account the sequential nature of the problem which
can generalize and predict a variety of failures that we have been experiencing in operation.
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Reinforcement Learning - SINBAD ARES

Camera
Vertical Horizontal Learning-based Optimisation of Particle Accelerators Under Partial
Corrector Carrector Observability Without Real-World Training

Jan Kaiser " Oliver Stein "' Annika Eichler !

A |
[ _— Abstract Particle accelerators are an excellent example of a high-
| impact real-world application where RL can make a mean-
) In recent work, it has been shown that reinforce- B " e
ingful difference. Among the most advanced machines of
/ ment learning (RL) is capable of solving a variety " N —
y i i f problems at sometimes super-human perform- our time, partcle accelerators find usc in many applications
Diagnostic ofp sas s such as fundamental physics research, cancer treatment, the
< ance levels. But despite continued advances in

Screen the field, applying RL to complex real-world con- development of vaccines and drugs as well as the devel-
Quadrupole 3 trol and optimisation problems has proven difficult. :""";‘ﬁ“: ;"if;f‘f.f&f,"n.".'.:,?\V,:,'Zf.‘;:% “:::;:ﬁcf“‘zﬂ‘;
Quadrupole 2 Iin this contribution, W demmoasirale haw 1o Sic- place strict requirements on the electron or photon beam de-

livered by the accelerator. Tuning accelerators to fulfil these
requirements has historically been a challenging and diffi-
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Reinforcement Learning - SINBAD ARES
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Reinforcement Learning - SINBAD ARES
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Bayesian Optimisation
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Bayesian Optimisation
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Bayesian Optimisation

/., posterior mean (u(-))

posterior uncertainty
Eo()

—(D
DESY. | Machine Learning for Accelerator(s) R&D | Antonin Sulc | Hamburg, Page 22


http://creativecommons.org/licenses/by/4.0/

Conclusion

> Presented overview of machine learning techniques for particle accelerator R&D.
> Custom language model to aid search/validation.

> Anomaly detection on logs, beam instrumentation, RF cavities.

> |dentified RF and BPM faults data using data-driven approaches.

> Reinforcement learning for automated control/optimization.
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Thank you!

Contact

Deutsches Elektronen- Antonin Sulc
Synchrotron DESY 0000-0001-7767-778X

MCS
antonin.sulc@desy.de

www.desy.de

Page 24

DESY. | Machine Learning for Accelerator(s) R&D | Antonin Sulc | Hamburg,


https://www.orcid.org/0000-0001-7767-778X
mailto:antonin.sulc@desy.de
https://doi.org/
http://creativecommons.org/licenses/by/4.0/

