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Neural Networks and Training

Classification Regression

https://shorturl.at/jlO35 https://shorturl.at/mxyP6
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Neural Network - Example
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Overview - MCS & MSK

> Language

> Anomaly Detection

> Control
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Developing a LLM for Particle Accelerators

> Source books, conference

proceedings, and arxiv preprints as

PDFs.

> Training a LLM without a human in

the loop.

> Showing improved performance over

general chatbots like ChatGPT and

Falcon.

> Use: Search, Validation, Checking
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LLM - Example

How many superconducting radio frequency (SRF) cavities does European
XFEL have?

Ours: European XFEL has a total of 800 superconducting radio frequency
(SRF) cavities. partially correct

falcon-180b: The European XFEL has a total of 16 superconducting
radio-frequency (SRF) cavity stations that contain approximately 170
individual SRF cavities... wrong

ChatGPT: As of my last knowledge update in September 2021, the European
XFEL (X-ray Free-Electron Laser) facility had a total of 100
superconducting radiofrequency (SRF) cavities. wrong
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LLM - Future - Multimodality
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Log Anomaly Detection

> Log anomaly detection using word

embeddings and Hidden Markov

Models.

> Represents logs as vectors

(Word2Vec), and models their

representations as HMMs.

> Scores entries by probability ratio to

detect anomalies (how well is the

message fitting to the sequence).

> Tested on EuXFEL logs, identifies

score spikes corresponding to errors.
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Log Anomaly Detection
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Log Anomaly Detection - Sequential Anomaly
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Log Anomaly Detection - Unexpected Message Anomaly
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Log Anomaly Detection - Real Example

...

0 getpid no process
1 no process try start
2 getpid no process
3 getpid no process
4 no process try start
5 getpid no process
6 no process try start
7 no process try start
8 pid change $nz $nz
9 getpid pid not match process name
10 pid change $nz $nz
11 getpid pid not match process name
12 pid change $nz $nz
13 pid change $nz $nz
14 pid not match process name toggled $nz times $nz min
15 pid not match process name toggled $nz times $nz min
16 signal term received
17 terminating threads closing files
18 writer thread terminated
19 interrupt thread terminated
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Log Anomaly Detection
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Anomaly Detection on BPMs

> Use data-driven approaches to

analyze beam trajectories at European

XFEL.

> Fit trajectories to sine function based

on periodicity from beam optics.

> Train transformer model to map

inputs to common mode for anomaly

detection.

> Identify some faults from beam data

recorded prior to issue reports.
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Anomaly Detection on RF Cavities

> RNN model for fault prediction on

XFEL SRF cavities.

> Model inputs: preprocessed cavity

waveform time series.

> Good test performance detecting

faults; low false positives

> Future work: distinguish fault types;

generative models
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Normalizing Flow - Invertible Models

NN
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y = fθ(x)
d

L

0

...

9

NN

f(y)

f−1θ(y)

0

...

9

DESY. | Machine Learning for Accelerator(s) R&D | Antonin Sulc | Hamburg, Page 18

http://creativecommons.org/licenses/by/4.0/


Normalizing Flow - Invertible Models

NN

x

y = fθ(x)
d

L

0

...

9

NN

f(y)

f−1θ(y)

0

...

9

DESY. | Machine Learning for Accelerator(s) R&D | Antonin Sulc | Hamburg, Page 18

http://creativecommons.org/licenses/by/4.0/


Reinforcement Learning - SINBAD ARES
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Bayesian Optimisation
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Conclusion

> Presented overview of machine learning techniques for particle accelerator R&D.

> Custom language model to aid search/validation.

> Anomaly detection on logs, beam instrumentation, RF cavities.

> Identified RF and BPM faults data using data-driven approaches.

> Reinforcement learning for automated control/optimization.

DESY. | Machine Learning for Accelerator(s) R&D | Antonin Sulc | Hamburg, Page 23

http://creativecommons.org/licenses/by/4.0/


Thank you!

Contact

Deutsches Elektronen- Antonin Sulc
Synchrotron DESY 0000-0001-7767-778X

MCS
antonin.sulc@desy.de

www.desy.de
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